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Abstract
The vacuum dependence on boundary conditions in quantum field theories
is analysed from a very general viewpoint. From this perspective, the
renormalization prescriptions not only imply the renormalization of the
couplings of the theory in the bulk but also the appearance of a flow in the space
of boundary conditions. For regular boundaries, this flow has a large variety of
fixed points and no cyclic orbit. The family of fixed points includes Neumann
and Dirichlet boundary conditions. In one-dimensional field theories, pseudo-
periodic and quasi-periodic boundary conditions are also RG fixed points.
Under these conditions massless bosonic free field theories are conformally
invariant. Among all fixed points only Neumann boundary conditions are
infrared stable fixed points. All other conformal invariant boundary conditions
become unstable under some relevant perturbations. In finite volumes, we
analyse the dependence of the vacuum energy along the trajectories of the
renormalization group flow providing an interesting framework for dark energy
evolution. In contrast, the renormalization group flow on the boundary does
not affect the leading behaviour of the entanglement entropy of the vacuum in
one-dimensional conformally invariant bosonic theories.

PACS numbers: 11.10.Hi, 11.25.Hf

1. Introduction

The emergence of the dark energy as one of the basic ingredients of the current standard
cosmological scenario, and the absence of an even vague understanding of its possible origin,
opens a window to the analysis of all possible mechanisms that generate background energy
(see, e.g., [1] for a review of recent proposals). The main problem is that the apparent value of
the dark energy is very tiny compared with any physical energy scale. A second problem is that
in a generic quantum field theory there is generation of vacuum energy and any renormalization
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prescription requires a fine tuning, which is not very convincing without the quantization of
the gravitational interaction.

The guess that dark energy might change with the evolution of the universe can be
understood even if dark energy is just vacuum energy. The finite corrections due to finite size
of the causal Hubble domain decrease as the universe continues to expand.

The aim of this paper is to analyse the variation of these finite size corrections under
renormalization group on the space of boundary conditions for scalar field theories in flat
space, although the results are generalizable for more general backgrounds.

The dependence of the vacuum energy on the boundary conditions [2] is well known
since the discovery of Casimir effect [3] (see [4–6] and references therein for recent
revisions). However, boundaries might also be considered as a source of new, although
peculiar, interactions and therefore can undergo renormalization [7, 8]. The renormalization
of boundary conditions modifies the critical behaviour of the theory [9–11]. In systems with
boundaries or defects, the boundary RG flow induces a dynamical behaviour on the boundaries.
The dynamics of D-branes in string theory emerges in this way [12].

The renormalization group flow is analysed from a global viewpoint in the most general
framework for boundary conditions of scalar field theories introduced in [13]. In particular, we
consider the possible existence of topological transitions [14] induced by the renormalization
of boundary conditions or cyclic orbits in the boundary RG flow [15]. The dependence of the
finite size corrections to the vacuum energy and vacuum entanglement entropy [16, 17] under
the boundary RG flow is analysed from a very general perspective.

2. Boundary conditions in field theory

The action which governs the dynamics of scalar field theory in a bounded domain � of flat
space consists of two different terms, S(φ) = SB(φ) + Sb(φ). The first one

SB(φ) = 1

2

∫
dt

∫
�

√
g dDx[|φ̇|2 − |∇φ|2 − V (|φ|2)] (1)

is defined in terms of the values of the fields in the bulk. The second term

Sb(ϕ) = 1

2

∫
dt

∫
∂�

√
g

∂�
dD−1x

[
|ϕ̇|2 − 1

2
ϕ∗∂nϕ − 1

2
(∂nϕ

∗)ϕ − |∇ϕ|2
]

(2)

depends only on the values of the fields at the boundary ∂�.3 g
∂�

denotes the metric induced
on the boundary by the bulk flat metric, and ∂n is the normal derivative at the boundary

ϕ = φ|
∂�

∂nϕ = ∂nφ|
∂�

. (3)

The presence of the boundary term Sb allows the generation of local classical equations of
motion without requiring any specific type of boundary conditions [19, 20]. Indeed, the
gradient term

V = 1

2

∫
�

|∇φ|2 (4)

can be rewritten as

V = 1

2

∫
�

φ†�φ +
1

2

∫
∂�

φ†∂nφ (5)

3 We will assume that the boundary is regular and smooth. See, e.g., [18] for the peculiarities associated with the
presence of irregular boundaries.
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where � is the Laplace–Beltrami operator � = −∂µ∂µ. In the quantum theory, the Laplace–
Beltrami operator must have a real spectrum in order to have a self-adjoint Hamiltonian

H = 1
2

√
� + m2 (6)

for the free field theory (the inclusion of interactions does not changes the picture [21]). This
means that the classical fields must satisfy boundary conditions which make the operator �

self-adjoint. The complete set of boundary conditions which satisfy this requirement [13]
is in one-to-one correspondence with the group of unitary operators of the boundary Hilbert
space L2(∂�, C). For any unitary operator U ∈ L2(∂�, C), the fields satisfying the boundary
condition

ϕ − i∂nϕ = U(ϕ + i∂nϕ) (7)

define a domain where � is a self-adjoint operator.
In the case of open strings, the corresponding conformal (1 + 1)-dimensional scalar field

theories are defined on the space interval � = [0, 1] ⊂ R and there is a large variety of
admissible boundary conditions described by the unitary group M = U(2). The unitary
matrices

UD =
(−1 0

0 −1

)
UN =

(
1 0
0 1

)
UP =

(
0 1
1 0

)
(8)

define Dirichlet, Neumann and periodic boundary conditions, which in string theory
correspond to a string attached to a D-brane background, free open and closed string theories,
respectively.

For higher N-dimensional target spaces or N-component strings, the set of boundary
conditions becomes M = U(2N) which includes matrices which interpolate between one
single closed string or N disconnected strings [13]. The topology change is described in this
picture by a simple change of boundary conditions in L2(∂�, C

N) [14].
If the spectrum of eigenvalues of the unitary operator U does not include the value ±1

(i.e. ±1 /∈ Sp U ), the boundary condition (7) can be rewritten as

∂nϕ = −i
I ± U

I ∓ U
ϕ (9)

which means that only the boundary values of the fields at the boundary can have an arbitrary
value ϕ whereas its normal derivative is determined by U and ϕ.

The corresponding operator mappings from unitary into self-adjoint operators

A± = −i
I ± U

I ∓ U
(10)

are the celebrated Cayley transforms. The inverse Cayley transform

U = I ∓ iA±
I ± iA±

(11)

recovers the unitary operator U from their self-adjoint Cayley transforms A±.
The condition of � being self-adjoint is necessary but not sufficient to guarantee the

unitarity of the corresponding quantum field theory. Indeed, in the case of free field theory
the Hamiltonian (6) must be self-adjoint. This requires that the spectrum of � + m2 must be
not only real but also positive which restricts the set of admissible boundary conditions to a
subset M of L2(∂�, C).

Because of the existence of the boundary term in (5), the Hamiltonian H (6) is not self-
adjoint if the spectrum of the unitary operator U intersects the following domain of phase
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factors

S1
m =

{
e2αi;−π < α � π, 0 < α <

π

2
− arctan m2, or

π

2
< −α < π − arctan m2

}
.

In any other case, −m2 is a lower bound for the spectrum of the operator � and H is self-
adjoint. One possible source of unitarity loss is the existence of edge states with large negative
eigenvalues of operator �.

The consistency of the quantum field theory imposes, thus, a very stringent condition on
the type of acceptable boundary conditions, even in the case of massive theories in order to
prevent this type of pathological behaviour of vacuum energy.

For real scalar fields there is a further condition. U has to satisfy a CP symmetry preserving
condition

U † = U ∗, U = UT . (12)

The usual Neumann and Dirichlet boundary conditions U = ±I satisfy this condition. In
general, for

U =
(

A1 B

BT A2

)
(13)

the condition requires that

A1 = AT
1 , A2 = AT

2 , A1B
∗ + BA

†
2 = 0 (14)

BB† + A1A
†
1 = I, A2A

†
2 + BTB∗ = I. (15)

In particular, the quasi-periodic condition ϕ(L) = M−1ϕ(0), ∂nϕ(L) = M∂nϕ(0) is also
compatible if M = Mt = M∗.

In the case of one single real massless scalar, the set of compatible boundary conditions
has two connected components: M0 given by the operators of the form U± = ±I and M1

given by

Uα = cos ασz + sin ασx. (16)

M0 includes Neumann and Dirichlet conditions, andM1 contains the quasi-periodic boundary
conditions

ϕ(L) = tan
α

2
ϕ(0), ∂nϕ(L) =

(
tan

α

2

)−1
∂nϕ(0) (17)

which include periodic
(
α = π

2

)
and antiperiodic

(
α = −π

2

)
boundary conditions.

3. Boundary conditions and renormalization group

Since boundary conditions appear more naturally in the Schrödinger picture of field theory and
the theory is plagued of ultraviolet singularities some doubts were raised about their relevance
for the quantum field theory. The pioneer work of Symanzik [21] confirmed the consistence
of the standard picture even in the presence of bulk renormalizable interactions (see [22] for
an explanation of a recent controversy [23]).

Moreover, there is a renormalization of the very boundary conditions because the boundary
terms are the source of new interactions.

The renormalization group can be defined in the continuum approach by

φ	

( x

	

)
= 	[φ][φ(x) − ξ	(x)] (18)



Vacuum energy and renormalization on the edge 6771

by means of a fluctuating field ξ	 with short-range fluctuations of order 1
	

. This implies that
the boundary condition

∂nϕ = Aϕ (19)

is renormalized to

∂nϕ	 = A	ϕ	, (20)

since

∂nφ	

(xb

	

)
= 	[φ]+1[∂nφ(xb) − ∂nξ	(xb)] = A	[φ]+1φ(xb) = A	φ	

(xb

	

)
(21)

with A	 = 	A. For more general boundary conditions, the continuum renormalization group
is given by

	U
†
	∂	U	 = 1

2

(
U

†
	 − U	

)
(22)

or

U
†
t ∂tUt = 1

2

(
U

†
t − Ut

)
(23)

for 	 = 	0et . Fixed points correspond, therefore, to self-adjoint boundary conditions U † = U .
In particular, Dirichlet and Neumann (U = ∓I) are renormalization group fixed points.

For mixed boundary conditions the RG flows from Dirichlet (UV) towards Neumann (IR)
conditions:

U = e2i arctan e−t
I. (24)

Critical exponents can be identified with the eigenvalues of the matrix Uc at the fixed
points. Since Uc is also Hermitian all critical exponents are either 1 or −1 and there is
no room for cyclic orbits. It is well known, however, that some quantum systems with
singular boundaries and singular interactions [15, 24] exhibit cyclic renormalization group
flows. Moreover, some topological field theories (e.g., Russian doll models) present a
similar behaviour [25]. In scalar field theories, this phenomenon simply does not occur
for regular boundaries. For the same reasons, topological transitions do not occur for finite
scale transformations since the flip of eigenvalues from −1 to +1 requires a change in the
parameter t of the flow from −∞ to ∞ as in (24)).

4. Conformal invariance and boundary conditions

In 1 + 1 dimensions the theory of massless scalar fields is formally conformal invariant.
However, boundary conditions might break this symmetry [9–11].

Conformal invariance is only preserved if the boundary conditions are stable under the
boundary renormalization group flow. The fixed points can easily be identified. For a
complex scalar field, besides the above-mentioned fixed points, which correspond to Dirichlet,
Neumann and pseudo-periodic boundary conditions and obviously are conformal invariant,
there are fixed points corresponding to quasi-periodic boundary conditions (17). They also
preserve the conformal symmetry.

In 1 + 1 dimensions this exhausts the whole set of conformal invariant boundary conditions.
Any other boundary condition flows towards one of these fixed points. The most stable fixed
point corresponds to Neumann conditions because all its critical exponents are +1. The
most unstable is that of Dirichlet conditions since all critical exponents are −1. This is
compatible with the fact that the neighbourhood of Dirichlet boundary conditions is plagued of
singularities.
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Periodic, quasi-periodic and pseudo-periodic fixed points present relevant and irrelevant
perturbations with critical exponents ±1, respectively. Negative values label the possible
instabilities. Implications of these results for string theory are well known. Periodic boundary
conditions appear as attractors of systems with quasi-periodic and pseudo-periodic conditions
which stress the stability of closed string theory vacuum. For open strings, the (stable) attractor
points are standard free strings (Neumann). Any other boundary condition flow towards one
of those fixed points.

Note that the absence of topological transitions in the boundary renormalization group
flow is a consequence of the fact that all relevant perturbations are always associated with −1
critical exponents.

In higher dimensions (D > 1) conformal invariance requires, even in the massless case
m = 0, that Neumann boundary conditions have to be modified in order to preserve conformal
invariance with a term

∂nϕ = D − 1

4D
Kϕ, (25)

proportional to the extrinsic curvature K of the boundary.
In the case of singular boundaries some more interesting boundary renormalization group

flows arise (see, e.g., [18] for a review): fixed points and cyclic orbits of the boundary
renormalization group flow can appear [15, 24, 25] and conformal invariance can be partially
broken to a discrete subgroup Z [24].

5. Vacuum energy and boundary conditions

The infrared properties of quantum field theory are very sensitive to boundary conditions [26].
In particular, physical properties of the quantum vacuum state like the vacuum energy may
exhibit a very strong dependence on the type of boundary conditions. This can be explicitly
shown in the simple case of a massless field defined on a finite one-dimensional interval [0, L].

For pseudo-periodic boundary conditions defined by the unitary operator

Uθ = cos θσx − sin θσy : ϕ(L) = eiθϕ(0), (26)

the Casimir vacuum energy (see, e.g., [5] and references therein) is given by

E0 = π

L

(
1

12
− min

n∈Z

(
θ

2π
+ n − 1

2

)2
)

. (27)

The vacuum energy dependence on θ is in this case relatively smooth. The only cuspidal
point at θ = 0 corresponds to periodic boundary conditions. A completely regular behaviour
is obtained for Robin boundary conditions

U = e2αi
I : ∂nϕ(0) = tan αϕ(0), ∂nϕ(L) = tan αϕ(L) (28)

which smoothly interpolate between Dirichlet
(
α = π

2

)
and Neumann (α = π) conditions

when α is restricted to the interval α ∈ [
π
2 , π

]
[27–29].

Finally, the Casimir energy for quasi-periodic boundary conditions [30]

E0 = π

L

(
1

12
− min

n∈Z

(
α

2π
+ n +

1

4

)2
)

(29)

is also dependent on the choice of the parameter α. Two particularly interesting cases are given
by α = 0, UZ = σz;ϕ(L) = 0, ∂nϕ(0) = 0 and α = π,U ′

Z = σz;ϕ(0) = 0, ∂nϕ(L) = 0
which correspond to a Zaremba (mixed) boundary condition: one boundary is Dirichlet and
the other Neumann.
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ω

Ω

Figure 1. Information loss by integration over the fluctuations of the fields inside the domain ω.

6. Vacuum entanglement entropy

The dependence of vacuum energy on boundary conditions seems to suggest that many other
observables may suffer the same effect. In particular, one may wonder whether or not the
entropy of the system is dependent on the type of conditions that constrain the values of
the fields at the boundary. The entropy of the field theory at finite temperature scales with the
volume of physical space. Only in quantum gravity or string theory, the entropy can scale with
the area of black hole horizon. However, in field theory it is possible to generate a mixed state
from the pure vacuum state 0 by integrating out the fluctuating modes in a bounded domain
ω of the physical space �:

ρω =
∫

ω

∗
0 0. (30)

The entropy of this state Sω = −Trρω log ρω, although ultravioletly divergent, provides a
measure of the degree of entanglement of the vacuum state. In the case of a free massless
real scalar field theory in one-dimensional spaces (D = 1), this entropy scales logarithmically
with the size lω of ω and the ultraviolet cut-off ε introduced to split apart the domain ω and its
complement �\ω

Sω = 1

3
log

lω

ε
, (31)

and in D = 2 dimensions it scales linearly with the perimeter Rω of ω

Sω = c2
Rω

ε
− γ, (32)

and in D > 2 dimensions as the volume of the boundary of ω

Sω = c
D
Vωε1−D. (33)

In particular, in three-dimensional spaces it scales with the area of the boundary of ω like in the
presence of a black hole [16, 17]. Although the coefficients of the leading terms c2, cD

in (32)
and (33) have been explicitly computed, they are not universal because they obviously depend
on the choice of the UV cut-off ε. In contrast, the coefficient c1 = 1/3 of the logarithmic term
in (31) is universal and does coincide with one-third of the central charge of the corresponding
conformal field theory. Similarly, the finite γ term in (32) is also universal in D = 2 dimension
and is related to a degree of topological entanglement [31].

It is remarkable that in D = 1 the coefficient c1 = 1/3 is also independent of the choice
of boundary condition in �. This in contrast with what happens for the finite size corrections
to vacuum energy. The coefficient of the 1/L term is also proportional to the central charge
but in that case the corresponding factor is very sensitive to the type of boundary conditions
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imposed at the boundary of �. The above results indicate that whereas the Casimir energy is
closely related with the infrared properties of the conformal theory which are sensitive to the
boundary conditions, the entanglement entropy is rather associated with the behaviour at the
interface between ω and its complement �\ω which do not depend on the choice of boundary
conditions at the edge of the physical space.

7. Conclusions

The description of regular boundary conditions in terms of unitary matrices provides a very
useful framework for the description of the boundary renormalization group flow and the
breaking of conformal invariance due to boundary effects. Neumann conditions turn out to be
the only boundary conditions which are absolutely stable under RG flow. All other boundary
conditions may have some relevant perturbations which are the source of RG instabilities.
However, the global structure of the flow does not permit topological transitions.

The finite size corrections to vacuum energy are very sensitive to the choice of boundary
conditions which discriminate between the different fixed points of the renormalization group
flow. In contrast, the leading contribution to entanglement entropy of the vacuum is insensitive,
for one-dimensional massless scalar field theories, to the change of boundary conditions. In
D = 2 dimensions, the same property holds for the finite correction to the entanglement
entropy of massless scalar theories. This fact is very relevant for the implementation of
quantum codes with topological stability [31]. However, these properties do not hold for the
leading terms contributing to the entanglement entropy.
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